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Making and breaking symmetry in development, growth
and disease
Daniel T. Grimes

ABSTRACT
Consistent asymmetries between the left and right sides of
animal bodies are common. For example, the internal organs of
vertebrates are left-right (L-R) asymmetric in a stereotyped fashion.
Other structures, such as the skeleton and muscles, are largely
symmetric. This Review considers how symmetries and asymmetries
form alongside each other within the embryo, and how they are then
maintained during growth. I describe how asymmetric signals are
generated in the embryo. Using the limbs and somites as major
examples, I then address mechanisms for protecting symmetrically
forming tissues from asymmetrically acting signals. These examples
reveal that symmetry should not be considered as an inherent
background state, but insteadmust be actively maintained throughout
multiple phases of embryonic patterning and organismal growth.
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Introduction
The vast majority of animals have body plans based on bilateral
symmetry. They possess orthogonal anterior-posterior (A-P) and
dorsal-ventral (D-V) axes and therefore have a left and right
side. The two sides of a perfectly bilateral animal are mirror
images of each other. However, this perfection is rarely realized
in the biological world; most animals exhibit left-right (L-R)
asymmetries, be they subtle or striking. These asymmetries can be
grouped into three categories: (1) fluctuating asymmetries, in which
small deviations from L-R symmetry result from developmental
noise; (2) anti-symmetries, in which structures are consistently
asymmetric but with the direction of asymmetry (i.e. left-handed
or right-handed) being random between individuals; and (3)
directional asymmetries, in which structures are again consistently
asymmetric but in this case the direction of asymmetry is the same in
all individuals. Directional asymmetries are common among the
bilaterian animals, a major example being the position of the
internal organs within vertebrates. The human heart, for example, is
offset to the left, as are the stomach and spleen; the gall bladder and
liver sit to the right, while the left and right lungs, and the two
kidneys, are different sizes and shapes (Fig. 1).
Other aspects of embryonic development and growth play out

symmetrically. The organs are encased by muscles and skeleton,
structures that are close to being L-R symmetric. Appendages that
protrude from the body, such as arms and legs, also exhibit L-R
symmetry for biomechanical and locomotive reasons (Fig. 1). The
organism therefore faces the challenge of controlling symmetries

and asymmetries such that they manifest only in the appropriate
tissue. For example, an L-R asymmetric pathway involving the
secreted TGFβ factor Nodal is present in neurula-stage embryos.
This pathway controls many aspects of asymmetric organ
morphogenesis (Grimes and Burdine, 2017), but structures such
as the somites and limb buds must be protected from its influence.
Achieving symmetry is compounded by the fact that symmetric and
asymmetric structures form from the same or closely juxtaposed
tissues and use many of the same signaling pathways.

After embryogenesis, symmetries are also maintained during
growth. Limbs grow seemingly independently for long periods of
time, up to 16 years in humans, yet achieve the same size to a precise
degree (Wolpert, 2010). The vertebral column is able to maintain
L-R symmetry during growth and adulthood, despite the presence of
mechanical forces that favor its curvature. The normal development
and maintenance of these symmetries is lost in diseases such as
Holt-Oram syndrome, where upper limb defects occur with a
consistent L-R bias (Newbury-Ecob et al., 1996), and idiopathic
scoliosis (see Box 1), where spinal symmetries break down and
three-dimensional curves develop during adolescent growth (Cheng
et al., 2015).

In this Review, I discuss progress in our understanding of how
symmetries and asymmetries form alongside one another during
development. I first summarize how the vertebrate embryo breaks
symmetry to give rise to directional asymmetry of organs. I then
discuss models for how the somites and limb buds are able to
maintain symmetry in spite of asymmetric molecular cues that
influence their development. Finally, I review how the limbs and
spine maintain symmetry during long periods of growth.
Throughout, I consider diseases in which abnormal symmetries
and asymmetries manifest, highlighting the insight that has come
from their study.

Breaking symmetry: from asymmetric molecules to
asymmetric embryos
To the taskof generating an embryowith directional L-R asymmetries,
the universe presents a considerable challenge: there is no
macroscopic feature of the world that distinguishes left from right.
The left and right sides of a bilateral structure can only be defined by
referring to a previously agreed upon asymmetric reference. So how
can two cells in a bilaterally symmetric embryo that are in equivalent
positions but on different sides of the midplane ‘know’ they are on
either the left or right side? Directional asymmetries at smaller scales
do exist: for example, the violation of symmetry byweak nuclear force
(Wu et al., 1957), the use of L but seldom D amino acids by living
organisms, as well as the chirality of centrioles (Bornens, 2012) and
even entire cells (Taniguchi et al., 2011; Wan et al., 2016). These
atomic,molecular and cellular asymmetries are all potential sources of
asymmetric patterning information at larger scales, but how they can
be transferred to the level of the embryo such that it can differentiate
left from right is far from obvious (Brown and Wolpert, 1990).

Institute of Molecular Biology, Department of Biology, University of Oregon,
Eugene, OR 97403, USA.

*Author for correspondence (dtgrimes@uoregon.edu)

D.T.G., 0000-0003-0173-1887

1

© 2019. Published by The Company of Biologists Ltd | Development (2019) 146, dev170985. doi:10.1242/dev.170985

D
E
V
E
LO

P
M

E
N
T

mailto:dtgrimes@uoregon.edu
http://orcid.org/0000-0003-0173-1887


Over the last 20 years, an answer for how vertebrate embryos can
tell their left from right has emerged. This model involves midline-
located L-R organizers (LROs) – the node in mice, Kupffer’s vesicle
in zebrafish and the gastroceol roof plate in Xenopus laevis – in
which symmetry is broken by a mechanism requiring motile cilia
and extracellular fluid flow (Fig. 2) (Essner et al., 2005; Hirokawa
et al., 2006; Kramer-Zucker et al., 2005; Nonaka et al., 2002, 1998;
Schweickert et al., 2007). Motile cilia are whip-like protrusions of
the cell surface built around a microtubule scaffold. They move
under the power of dynein motors and drive extracellular fluid flows
(Spassky and Meunier, 2017). In LROs, the rotational movement of
a field of motile cilia, all in the same direction, generates a fluid flow
that is stronger on the left side than the right. This L-R difference is
sensed by the embryo and, as a result, L-R asymmetries in gene
expression are established around LROs (Fig. 2) (McGrath et al.,
2003; Schweickert et al., 2010). Initially, these differences are
subtle, but they are then amplified by feedforward loops and the
spreading of secreted factors (Nakamura et al., 2006, 2012). This
results in broad asymmetrically acting pathways in lateral plate
mesoderm (LPM) tissue. Pathways active on one side are prevented
from activating on the opposite side by midline barriers (Lenhart
et al., 2011; Nakamura et al., 2006). In this way, subcellular
asymmetries within cilia are transferred to the scale of the embryo
by fluid flow and downstream signaling pathway networks.
A second model for the origin of embryonic L-R asymmetry, the

ion flux model, argues that asymmetry is established earlier, before
cilia are present in the embryo (Vandenberg and Levin, 2013).
Indeed, some vertebrates, such as the chick and pig, clearly do not use
a cilia/flow system to break embryonic symmetry (Gros et al., 2009),
suggesting that other mechanisms must exist in these organisms. In
the ion flux model, chiral cytoskeletal elements transport potassium
channels and proton pumps to one side of the embryo during cleavage
stages (Qiu et al., 2005), ultimately resulting in asymmetries in
transmembrane voltage and pH between the left and right halves of
the embryo (Adams et al., 2006). Once established, these bioelectric
gradients are proposed to then directionally transport charged

molecules through gap junctions to one side of the embryo
(Fukumoto et al., 2005a,b). Serotonin, for example, is transported
to the right side where it represses the expression of the key left-side
determinant Nodal (Carneiro et al., 2011).

Both the cilia/flow and ion flux models explain how molecular/
cellular chirality can be transferred to the level of the embryo, but
distinguishing between the two has proved difficult. It is true that
many of the components of the ion flux model also play roles in the
cilia/flow mechanism in Xenopus laevis (Beyer et al., 2012a,b;
Walentek et al., 2012) but equally some components are used by
organisms that do not use the flow mechanism at all (Abe and
Kuroda, 2019; Chuang et al., 2007; Davison et al., 2016; Kuroda
et al., 2016; Oviedo and Levin, 2007; Tee et al., 2015). These
controversies likely reflect a complex evolutionary situation in
which several mechanisms for amplifying asymmetry from the level
of cytoskeletal chirality exist and potentially intermingle to different
extents in different species (Box 2). Which mechanisms are
ancestral, and potential reasons for the loss of cilia/flow in some
species, have been the subject of excellent reviews (Blum et al.,
2014a,b; Vandenberg and Levin, 2013).

Regardless of the upstream mechanisms, the result of embryo-
level symmetry breaking is the activation of Nodal in the left but not
right LPM (Collignon et al., 1996; Lowe et al., 1996). Lateralized
Nodal is conserved across vertebrates as well as some invertebrates
(Grande and Patel, 2009) (Box 2). Once activated in the left LPM
at the level of the LRO,Nodal spreads throughout the left LPMwhere
it activates the expression of Pitx2, a homeodomain transcription
factor that remains asymmetrically expressed into organogenesis
(Campione et al., 1999; Piedra et al., 1998; Ryan et al., 1998;
Shiratori et al., 2006; Yoshioka et al., 1998). Nodal and Pitx2
asymmetries drive many organ asymmetries during morphogenesis
(Grimes and Burdine, 2017). For example, Nodal signaling from the
left LPM to the left side of the midline-positioned zebrafish heart
results in the leftward migration of cardiac cells. This transforms the
initially symmetric heart tube into a leftward-pointing tube, a process

Fig. 1. Vertebrates are an amalgam of symmetric and asymmetric
structures.Although themuscles and skeleton are largely symmetric between
left and right, the majority of the internal organs exhibit asymmetries in their
overall position and shape.

Box 1. Diseases in which abnormal symmetries and
asymmetries manifest
Heterotaxy, a disorder in which the L-R placement of visceral organs is
affected, occurs in around 1 in 10,000 people (Sempou and Khokha,
2019; Sutherland and Ware, 2009). However, when stillbirths are
accounted for, heterotaxy is likely much more frequent. Although
heterotaxy can impact several organs, the effect on the heart is
particularly detrimental owing to its complex L-R construction. Indeed,
up to 3% of congenital heart disease (CHD) cases result from heterotaxy
(Sutherland and Ware, 2009). A related condition, primary ciliary
dyskinesia (PCD), affects around 1 in 10,000-20,000 live births and is
caused by abnormal beating of motile cilia (Mitchison andValente, 2017).
This results in defective mucus clearance in the lungs, causing chronic
infections, as well as infertility and abnormal organ L-R asymmetry in
about half of patients. Other diseases affect tissues that are usually
symmetric, such as the spine. Deficits in the bilateral symmetry of somite
formation cause congenital scoliosis, a birth defect in which vertebrae are
often structurally malformed (Dunwoodie et al., 2002; Li et al., 1997a;
Sparrow et al., 2012; Turnpenny et al., 2007). A more common form of
scoliosis, termed adolescent idiopathic scoliosis (AIS), occurs in 3-4% of
children worldwide. AIS is defined by lateral curves greater than 10° and
typically begins during adolescent growth. Spinal bracing or, in extreme
cases, surgical intervention are the onlyavailable preventative treatments
(Cheng et al., 2015). Recent insight into the etiopathogenesis of AIS has
emerged. For example, the proprioceptive system (Blecher et al., 2017)
as well as cerebrospinal fluid flow (Grimes et al., 2016) have both been
implicated in maintaining spinal straightness.
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termed cardiac jogging (Baker et al., 2008; Grant et al., 2017; Lenhart
et al., 2013; Veerkamp et al., 2013). Similarly, Pitx2 expression in the
left side of the dorsal mesentery of the gut, a derivative of the LPM,
causes asymmetric cell architecture and adhesion changes that drive
directional gut tilting, ultimately resulting in stereotyped asymmetric
gut coiling in birds and mammals (Davis et al., 2008; Kurpios et al.,
2008; Savin et al., 2011; Welsh et al., 2013). The left-sided Nodal-
Pitx2 pathway is therefore a major source of L-R asymmetric
positional information for cells.
To sum, an embryonic symmetry-breaking event followed by

amplification of initially subtle asymmetries by regulatory networks
transfers molecular- and cellular-level asymmetries to the scale of
the embryo. As a result, the L-R Nodal-Pitx2 pathway is established
in the LPM in which Nodal and downstream genes are expressed
specifically in the left but not right side. Several other factors, in
addition to Nodal and Pitx2, act asymmetrically in embryos (Levin
et al., 1995; Meyers and Martin, 1999; Ocaña et al., 2017).
I hereafter refer to these embryo-scale asymmetrically acting
factors, which usually act in the LPM and its derivatives, as the
L-R pathway.

Making symmetry: protecting symmetric structures from
asymmetric influences
The asymmetric internal organs are surrounded and supported by
symmetric features of the body: muscles, skeleton and limbs.
However, the developmental precursors of these, the somites and
limb buds, form in an embryo that is patterned asymmetrically by
the L-R pathway. The somites form from paraxial mesoderm, a
tissue that lies between LROs and LPM, and so may relay
asymmetric information, while limb buds outgrow from the
molecularly asymmetric LPM itself. How, then, are these
precursors able to maintain symmetry during their formation?

A conceptual framework for maintaining symmetry in the face of
asymmetric signals
Perhaps the simplest model would be to suppose that the somites
and limb buds cannot respond to asymmetric signals. However,
we know that both symmetric and asymmetric structures use

overlapping molecular cues during their formation, so it is more
likely that symmetric structures must be actively protected from
asymmetric signals. Indeed, in certain mutant backgrounds,
normally symmetric structures become directionally asymmetric,
suggesting the existence of active protection mechanisms. How
might this be achieved? In Fig. 3, I propose a conceptual framework
for the generation of symmetry in the presence of directionally
asymmetric signals. This encompasses two models: the balancer
model and the wedge model. Both can be visualized as a seesaw
with forces acting on either side. A horizontal seesaw implies a
symmetric phenotype (Fig. 3Ai), but if the forces result in tilting of
the seesaw to the left or the right, then asymmetric left-biased or
right-biased phenotypes, respectively, manifest (Fig. 3Aii,iii). Let
us suppose that asymmetrically acting L-R influencers can
potentially impact the position of the seesaw (Fig. 3Bi). A typical
L-R influencer might be the left-sided Nodal pathway, but others
also exist, including those that act on the right side. In the balancer
model, such L-R influencers are counteracted by an asymmetrically
acting contralateral ‘balancer’ (Fig. 3Bi,ii). In the wedge model, by
contrast, a symmetrically acting ‘wedge’ holds the seesaw
horizontally, preventing the L-R influencer from tilting it
(Fig. 3Ci,ii). Both models predict asymmetries in normally
symmetric structures when either the balancer (Fig. 3Biv) or the
wedge (Fig. 3Civ) is lost. By contrast, symmetry is the most likely
outcome upon loss of the L-R influencer (Fig. 3Biii,Ciii), although
fluctuating asymmetries may emerge stochastically, especially in
the balancer model (Fig. 3Biii). Importantly, balancers do not
normally influence the seesaw in the absence of L-R influencers
because their own expression is asymmetric and so depends on the
L-R pathway. This is not the case for wedges, which are equally
active on both sides of the seesaw independently of L-R asymmetric
pathways. In the following sub-sections, I consider mechanisms for
generating symmetry during limb bud outgrowth and somite
formation in light of this conceptual framework.

Maintaining limb bud symmetry
The limbs of vertebrates – arms, legs,wings and fins– begin to form in
the embryowhen subpopulations of somatic LPM cells are induced to
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Fig. 2. Asymmetric fluid flow converts cellular chirality to embryo-level asymmetry. (A) Schematic ventral view of a three-somite stage mouse embryo
depicting themouse left-right organizer (LRO) (the node; blue oval) at the posterior tip of the notochord (nc). A leftward fluid flow in the LRO (blue arrow) represses
Dand5 on the left, causing derepression and activation of the Nodal pathway in the left LPM (L-LPM). Midline-expressed Lefty inhibits Nodal activity in the
right LPM (R-LPM), therebymaintaining unilateral activity. (B) Close-up view of a section of the LRO showing central pit cells harboring posteriorly polarizedmotile
cilia, which rotate clockwise when viewed ventrally. These cilia generate an overall leftward flow in the LRO. This flow is sensed by immotile and unpolarized
sensory cilia on the surface of lateral crown cells. In a little-understood sensory pathway, flow signals on the left cause the post-transcriptional repression of
Dand5, ultimately promoting left LPM initiation of the Nodal pathway. By contrast, Dand5 remains unrepressed in right-sided crown cells and so Nodal signals do
not reach a level compatible with R-LPM Nodal pathway activation.

3

REVIEW Development (2019) 146, dev170985. doi:10.1242/dev.170985

D
E
V
E
LO

P
M

E
N
T



generate a bud. Expression ofFgf10 in the bud-forming LPM induces
Fgf8 in the overlying ectoderm; this establishes an Fgf10-Fgf8
positive-feedback loop that promotes limb bud outgrowth (Fig. 4A,B)
(Ohuchi et al., 1997; Sekine et al., 1999; Xu et al., 1998). Expression
ofFgf10 is initially activated by Tbx transcription factors: Tbx4 in the
hindlimb (HL) and Tbx5 in the forelimb (FL) (Naiche and
Papaioannou, 2003; Rallis et al., 2003; Rodriguez-Esteban et al.,
1999). In the HL, Pitx1 acts upstream of Tbx4, while retinoic acid and
Wnt/β-catenin signaling both control Tbx5 expression in the FL
(Sheeba and Logan, 2017). The level at which limb bud outgrowth
occurs along the anterior-posterior axis is controlled by Hox genes
(Fig. 4A,B) (Moreau et al., 2019; Tickle, 2015).
Evidence, initially from studies of human limb disorders,

indicates that active mechanisms are essential for generating limb
symmetry. Holt-Oram Syndrome (HOS; OMIM: 142900) is a
dominant disorder in which patients exhibit upper limb defects with
variable severity but in which the left arm is more highly defective
than the right arm (Newbury-Ecob et al., 1996). HOS is caused by
haploinsufficiency of the FL factor TBX5 (Basson et al., 1997; Li
et al., 1997b). However, modeling this condition in the mouse has
proved challenging because mutants in which Tbx5 is lost
completely fail to form FLs (Rallis et al., 2003). Recent progress
has nevertheless been made with the creation of two mouse models
that recapitulate HOS phenotypes (Sulaiman et al., 2016). In one
model, here called Tbx5hypomorph, Tbx5 is deleted using a limb-
restricted Cre recombinase (Prx1-Cre), causing a loss of FL
outgrowth. This defect can be partially rescued by Prx1-specific

expression of Tbx5 at hypomorphic levels relative to wild type. In a
second model, Tbx5mosaic, a Prx1-Cre line that expresses Cre in a
delayed andmosaic fashion, is used to lower Tbx5 levels in the limb-
forming region. Both manipulations reduce the effective levels of
Tbx5 in the FL in an L-R symmetric manner but, in both cases, left
FLs are more severely impacted than right FLs (Sulaiman et al.,
2016). This recapitulates the situation in individuals with HOS and
provides strong evidence that Tbx5 buffers an underlying FL
asymmetry (Fig. 4A).

As Tbx5 is expressed symmetrically, but because lowering its
levels induces asymmetry in normally symmetric structures, we can
consider Tbx5 as a wedge that counteracts an L-R influencer
(Fig. 4A). In wild-type embryos, Tbx5 levels are above a threshold
that is high enough to prevent the seesaw from tilting. By contrast,
when Tbx5 levels are lowered (e.g. as in Tbx5hypomorph or Tbx5mosaic

mutants), the L-R influencer can tilt the seesaw to the left, resulting
in left-biased defects. Because the sidedness of FL defects are
biased and not random, reversal of embryonic situs should reverse
the L-R influencer, and thereby reverse the directionality of the FL
defects. Fittingly, reversal of situs at the same time as reduction
of Tbx5 levels in inv;Tbx5hypomorph embryos results in right FLs
being more severely affected (Sulaiman et al., 2016). However, the
identity of the L-R influencer that Tbx5 counteracts is not known.

A second example of how limb symmetry is achieved is provided
by the role of Pitx1 in HLs (Fig. 4B). Loss of Pitx1 in the
mouse causes severe HL defects owing to reduced chondrogenesis
and myogenesis (Szeto et al., 1999). Importantly, HLs are

Box 2. Bilaterality and asymmetry-generating mechanisms across evolution
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The majority of extant animal species exhibit a bilateral body plan and so are grouped together in the bilateria, the most recent common ancestor of which is
called urbilateria (De Robertis and Sasai, 1996). Bilaterality likely evolved, perhaps more than once, before the Cambrian explosion, as it seems to favor
locomotion (Genikhovich and Technau, 2017). But once the bilateral body plan appeared, it may have come to dominate the animal kingdom owing to its
potential for increased complexity and, thus, its highly evolvable nature. The inter-relationships between the bilateria are shown in the figure (left panel). The
presence of Nodal, and its requirement for L-R asymmetry, in both protostomes and deuterostomes suggests it was present in urbilateria but was
subsequently lost in some animals such as the ecdysozoa. The panel on the right shows the evolutionary relationships between species that have been well
studied with respect to L-R asymmetry. Evolutionary logic suggests that a cilia and flow-based mechanism is a trait shared by the deuterostomes in general,
although it has been lost in some species such as the chicken (and likely all birds) and the pig for currently unknown reasons. There is evidence that
actomyosin components, such as Myo1D, control L-R asymmetry in many deuterostomes as well as the model ecdysozoans Drosophila and C. elegans,
supporting an ancestral role for the cytoskeleton in generating L-R asymmetry within the bilateria (Lebreton et al., 2018; Yuan and Brueckner, 2018).
Disruption of Myo1D in the model vertebrates Xenopus laevis and zebrafish results in L-R defects owing to perturbation of left-right organizer flow (Juan
et al., 2018; Saydmohammed et al., 2018; Tingler et al., 2018).
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asymmetrically affected, with the right HL being more severely
reduced than the left (Lanctot et al., 1999). Similarly, loss-of-
function PITX1 mutations cause clubfoot (OMIM: 119800), a
condition in which the right leg is often more severely impacted
(Gurnett et al., 2008). This asymmetric effect of Pitx1 malfunction
is a result of partial compensation by Pitx2 on the left side. Pitx2 is
expressed in the left LPM downstream of Nodal signals and, as a
result, is present in the early limb-forming field on the left.
Experiments in mice in which both Pitx1 and Pitx2 are mutated
suggest that the overall dose of Pitx transcription factors is crucial in
determining HL outgrowth and identity (Marcil et al., 2003). Thus,
in a wild-type embryo, bilaterally high Pitx1 levels ensure that a
threshold is overcome for normal HL formation such that L-R
differences in Pitx2 do not have an asymmetric effect on the
developing limb. Pitx1 could therefore be considered as a wedge
that counteracts the L-R influencer Pitx2 (Fig. 4B).

Other molecular factors controlling limb symmetry have been
discovered. The transcription factor Sall4 acts upstream of Tbx4 in
HL development, yet loss of Sall4 causes unilateral defects with no
directional bias (Koshiba-Takeuchi et al., 2006). This observation is
currently unexplained but suggests that, in addition to directional
asymmetries, stochastic differences between left and right limb buds
also exist and must also be buffered to generate a symmetric
outcome. Indeed, careful measurements have shown that there can
be a high variance in the levels of sonic hedgehog between the left
and right limb buds at particular developmental stages (Zhang et al.,
2017), yet limb patterning is consistently achieved in a symmetric
fashion regardless. Understanding the range of molecular
differences that are compatible with a symmetric outcome, as well
as how intrinsic noise is buffered, will provide insight into
developmental robustness. The symmetric appendages are ideal
for such studies as any fluctuating asymmetries between bilaterally
paired structures act as readouts of stochastic variation (Debat and
Peronnet, 2013).

The symmetry of segmentation
The somites, the embryonic precursors of repetitive body elements,
including vertebrae and skeletal muscle, are bilaterally paired
structures that form via the anterior to posterior segmentation of the
paraxial mesoderm on either side of the notochord (Bénazéraf and
Pourquié, 2013). Segmentation of this tissue, termed presomitic
mesoderm (PSM), is controlled by the interaction of oscillations of
cyclically expressed genes, called the segmentation clock, with
opposing gradients of FGF8 (posterior to anterior) and retinoic acid
(RA; anterior to posterior) that together set a concentration threshold
called the determination front (Fig. 5A). Cells positioned anterior to
the determination front can initiate a segmentation program, whereas
cells posterior to it cannot, owing to high levels of FGF8 activity
(Hubaud and Pourquié, 2014). The number of PSM cells that pass
the determination front during one cycle of the segmentation clock
thereby sets the size of each somite. The movement of the
determination front and the length of the segmentation clock
usually occurs synchronously on the left and right sides of the
embryo and so somites emerge in a bilaterally symmetric fashion.

A foothold into the molecular basis of bilateral somitogenesis has
been revealed by experiments in mouse, chick and zebrafish
embryos in which RA signaling is perturbed by inhibition or
mutation of the RA biosynthetic enzyme RALDH2 (Kawakami
et al., 2005; Sirbu and Duester, 2006; Vermot et al., 2005; Vermot
and Pourquié, 2005). This leads to asymmetries in the segmentation
clock and the determination front, causing delayed somite formation
on one side of the embryo: the right side in mouse and zebrafish; and
the left side in chick (Fig. 5B). Biochemical analysis of RA
signaling in this context demonstrates that a complex called
WHHERE, which consists of WDR5, the histone deacetylases
HDAC1 and HDAC2, and the atrophin family protein RERE,
positively regulates RA signaling during the control of somite
symmetry (Vilhais-Neto et al., 2017, 2010). As such, mutations in
Wdr5, Hdac1, Rere and Ehmt2, a gene encoding a histone
methyltransferase that can also interact with RERE but more
transiently than other members of the WHHERE complex, all cause
right-biased somitogenesis delays in the mouse (Vilhais-Neto et al.,
2017). Importantly, defective RA signaling does not impact the L-R
pathway in the LPM (Niederreither et al., 2001). Moreover, the
directional bias of somite asymmetry in Raldh2 and Rere mutants
can be reversed when the L-R pathway is reversed (Vermot and
Pourquié, 2005). Together, this suggests that RA signals buffer a
somite desynchronizing influence from the L-R pathway.
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Fig. 3. Conceptual framework for maintaining symmetry in the face of
asymmetric signals. (A) The embryo is conceptualized as a seesaw that,
when horizontal (i), represents a L-R symmetric outcome. Tilting of the seesaw
signifies left- or right-biased asymmetries (ii and iii). (B) The balancer model
assumes the existence of contralateral balancers that counteract
asymmetrically acting L-R influencers (i). In wild-type embryos, the L-R
influencer and the balancer perfectly counteract, resulting in symmetry (ii).
Symmetry is also the outcome upon loss of the L-R influencer (iii) because
balancer activity is also lost as its asymmetric action is downstream of the L-R
pathway. However, fluctuating asymmetries might be expected to emerge in
such a condition. By contrast, loss of the balancer results in ectopic
asymmetries in normally symmetric structures (iv). (C) In the wedge model,
bilateral wedges hold the seesaw horizontally, and thereby favor a symmetric
outcome, regardless of the action of L-R influencers (i,ii). In this scenario,
symmetry is maintained upon loss of the L-R influencer (iii) but asymmetry
occurs when the wedge is lost (iv).
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How might this be achieved? Although many of the components
of the RA signaling pathway are expressed symmetrically, RA
pathway activity itself is asymmetric, being higher in the right PSM
than the left in mice (Vilhais-Neto et al., 2010). This occurs because
the RERE-interacting protein NR2F2, a nuclear receptor that
occupies RA-responsive promoters and positively regulates RA
signaling, is expressed asymmetrically within the PSM with a right
bias. The molecular identity of the desynchronizing influence is
likely FGF8. In mouse embryos, Fgf8 expression is normally
restricted to the tail bud, posterior to the node. However, in the
absence of RERE, Fgf8 expression expands anteriorly and
asymmetrically, more so on the right side (Fig. 5B). As FGF8
represses the program that initiates somite formation, this ectopic
encroachment of FGF8more anteriorly on the right serves to explain
the right-sided delay in somite formation in mouse embryos upon
loss of RA (Vermot et al., 2005; Vilhais-Neto et al., 2010).
Intriguingly, FGF8 has opposite roles in establishing L-R
asymmetry in mouse and chick, being a left-side determinant in
chick but a right-side determinant in mouse and rabbit (Boettger
et al., 1999; Fischer et al., 2002; Meyers and Martin, 1999).
Fittingly, NR2F2 is expressed more highly in the left PSM in chick
(Vilhais-Neto et al., 2010), a result that coheres with opposite
somite formation delays upon reduced RA signaling in chicken and
mouse embryos (Vermot et al., 2005; Vermot and Pourquié, 2005).
Thus, RA acts as a balancer that counteracts an asymmetric FGF8
signal to maintain somite symmetry (Fig. 5B).
The precise molecular details of this interaction have yet to be

resolved but it is worth noting that the expansion of Fgf8 expression
in Rere mutants may be a direct effect, as the Fgf8 locus harbors a
RA-responsive element at which RERE localizes in the absence of
RA, acting as a co-repressor (Kumar and Duester, 2014). In the
presence of RA, RERE is released from the Fgf8 locus and replaced
by a strong repressive complex containing HDAC1 and PRC2,
which deposits repressive chromatin modifications (Kumar and
Duester, 2014). Thus, RERE acts as more than a positive regulator
of RA signaling, something that is underlined by the fact that Rere/
Raldh2 double mutants show a more severe somite symmetry defect
than Raldh2 single mutants, although the latter already exhibit a
complete loss of RA signaling (Vermot et al., 2005; Vilhais-Neto
et al., 2010).
These experiments reveal the importance of controlling the

symmetry of the determination front. Defects in the segmentation
clock, which is controlled by oscillations of Delta-Notch pathway
activity, also result in ectopic somite asymmetry. However, in
contrast to RA disruption, treatments that perturb Notch signaling
typically result in somite asymmetries without consistent L-R bias

(Dunwoodie et al., 2002; Evrard et al., 1998; Holley et al., 2000,
2002; Jiang et al., 2000; Zhang and Gridley, 1998), perhaps partly
because the L-R pathway is also randomized in many of these cases
owing to the role of Notch signaling in early L-R asymmetric
patterning (Boskovski et al., 2013; Kawakami et al., 2005; Matsui
et al., 2012; Saude et al., 2005). Some Notch signaling components,
such as Suppressor of Hairless, have also been found to control RA
biosynthesis (Echeverri and Oates, 2007). Thus, Notch signals are
involved in several processes that impinge upon somite symmetry. It
is not surprising, therefore, that the majority of genes linked to
congenital scoliosis (see Box 1), a disease in which spinal symmetry
breaks down due to structural malformations of the vertebrae, play
roles in the Notch pathway (Turnpenny et al., 2007).

Some additional factors have been linked to somite symmetry.
For example, in zebrafish embryos, loss of the transcription factor
DMRT2A causes both abnormal L-R asymmetric patterning and
L-R desynchronization of the segmentation clock (Saude et al.,
2005). Although mechanistic details are unknown, it is likely that
DMRT2A acts in Kupffer’s vesicle to prevent asymmetric signals
being transferred to the apposed posterior PSM. Precise expression
of DMRT2A is controlled by the RNA-binding protein CELF1,
which binds to the 3′ untranslated region of dmr2ta and post-
transcriptionally dampens its expression (Matsui et al., 2012). As
such, CELF1 is also essential for generating symmetric somites
(Matsui et al., 2012). Although we do not understand how CELF1
controls symmetry and asymmetry, it is noteworthy that another of
its targets is Pkd2, a transient receptor potential (TRP) cation
channel that is essential for L-R patterning alongside its protein
partner PKD1L1 (Field et al., 2011; Pennekamp et al., 2002). Thus,
CELF1 could control L-R patterning, in part, through regulation of
PKD2. Interestingly, although DMRT2 is expressed in Hensen’s
node in chick, it is not present in the mouse node. Moreover, mouse
embryos lacking Dmrt2 do not exhibit any L-R defects (Lourenco
et al., 2010). Thus, the function of DMRT2 in controlling L-R
symmetry and asymmetry seems to have been lost in the lineage
leading to the mouse.

Growing symmetrically
Achieving symmetry in size during growth by contralateral
communication
A deep and still poorly understood property of biological systems is
growth control, a process in which structures achieve their proper
size despite intrinsic noise as well as genetic and environmental
variation (Debat and Peronnet, 2013; Lander, 2011; Rao et al.,
2002; Waddington, 1959). Mechanisms for achieving a certain size
in a particular organ span scales, ranging from molecular to

Loss of Pitx2 Wild type Loss of Pitx1 Loss of influencerWild type Loss of Tbx5 
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Fig. 4. The maintenance of limb bud
symmetry. (A) Schematic of a mouse
forelimb showing the pathway that
promotes forelimb outgrowth. Tbx5,
which is expressed symmetrically, acts
as a wedge to maintain symmetry that
buffers an unknown L-R influencer. Loss
of Tbx5 causes left-biased forelimb
defects. (B) Schematic of a mouse
hindlimb showing the pathway that
promotes limb bud outgrowth. Pitx2,
which is expressed specifically in the left
LPM, is an L-R influencer that can
disrupt limb symmetry in the absence of
Pitx1, which thereby acts as a wedge to
buffer against underlying Pitx2
asymmetry.
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organismal levels. For convenience, we can divide mechanisms of
size control into two categories: organ intrinsic and organ extrinsic.
A typical organ-intrinsic mechanism involves an inhibitor of growth
(called a ‘chalone’) being secreted by an organ: when the organ
reaches a certain size and the inhibitor crosses a concentration
threshold, further growth is repressed (Bullough and Laurence,
1964; McPherron et al., 1997; Plikus et al., 2008). An organ-
extrinsic mechanism might instead involve a systemic growth factor
secreted distantly that travels to the target organ, or physical
constraints imparted on the organ by neighboring tissues. Early
examples of extrinsic regulation came from grafting experiments in
which limb buds were exchanged between closely related species of
different sizes; the size the grafted limb attained was partially
influenced by the size of the host body (Ohki-Hamazaki et al.,
1997). Organ-intrinsic and organ-extrinsic mechanisms likely
collaborate to promote the generation of target organ size robustly
(Elgjo and Reichelt, 1994; Ikeda et al., 2009).
The size control of bilaterally paired structures, such as limbs,

represents a special case where a third potential mechanism
becomes apparent: contralateral regulation, whereby the growth
status of a structure on one side of the body could potentially signal
to and impinge upon the growth of the equivalent structure on the
opposite side. Such communication could be essential in achieving
symmetry of size and has recently been found to act in mouse limbs
within the context of catch-up growth, a term that refers to the

increase in growth rates after a growth-retarding condition such that
normal body proportions are ultimately achieved. Specifically, it has
been shown that activating the cell cycle repressor p21 in limb
chondrocytes in the left side of mouse embryos during late
embryogenesis results in decreased bone growth and shorter left
limbs (Roselló-Díez et al., 2018). However, the ratio of limb lengths
between the two sides is maintained, suggesting that right limb
bones respond to the experimentally induced delay in left limb bone
growth by reducing their own growth (Roselló-Díez et al., 2018).
Indeed, left limb-specific insults result in a systemic growth
reduction, mediated by reduced placental efficiency, which is able
to maintain body proportions. However, when placental function is
re-enhanced, although limb-body proportions become abnormal,
limb symmetry is still maintained (Roselló-Díez et al., 2018). This
suggests that placental-mediated systemic growth retardation upon
left limb growth reduction cannot account for the maintenance of
limb symmetry, leaving open the possibility of a more direct limb-
limb communication system that maintains limb symmetry upon
unilateral growth reduction. The molecular basis of this putative
mechanism awaits discovery.

Other studies have also provided evidence of crosstalk between
the left and right limbs in the context of injury and regeneration. For
example, regeneration studies of the bioelectric properties of
Xenopus HL epidermis have revealed that the depolarization that
occurs in the amputated HL also occurs in the contralateral HL with
the same pattern (Busse et al., 2018). Another example occurs in rats
where HL tibial fractures induce growth-promoting BMP
expression in both the fractured HL and the contralateral
uninjured limb (Fischerauer et al., 2013). These studies reveal that
limb crosstalk occurs, but discovering which systems and
mechanisms mediate it remains a future challenge. They also warn
against the use of contralateral limbs as internal controls.

Achieving and maintaining body straightness
Alongside limb symmetry, the body itself must maintain its overall
straight shape (i.e. without lateral or three-dimensional curvatures).
During axial elongation, embryonic growth at the posterior must be
regulated such that bilateral symmetry is achieved, with defects in
this process producing lateral bends in the trunk (Lawton et al.,
2013). Elongation occurs when mesodermal progenitor cells
undergo an epithelial-to-mesenchymal transition and then migrate
into PSM, sorting symmetrically between left and right halves of the
embryo. This is possible because the transition increases the
disorder of their motion, preventing stable and chiral vortices of
migration from forming that would otherwise result in asymmetric
sorting between left and right (Das et al., 2017). Thus, increasing
disorder at the cellular level promotes the emergence of symmetry of
the elongating trunk.

During body elongation, the axis also straightens from a curled
position into a straight head-to-tail axis. This is readily observed in
the zebrafish embryo, which is initially curled ventrally around the
yolk sphere. Over the first 1.5 days of development, the embryo
extends and the trunk moves dorsally, thereby straightening the
body axis (Fig. 6A). Recent evidence suggests that the Reissner
fiber, a proteinacous thread extending along the inside of the central
canal of the spinal cord in vertebrates, is essential for zebrafish body
straightening (Fig. 6B) (Cantaut-Belarif et al., 2018). Loss of the
Reissner fiber causes ventral curves, a phenotype that is also present
in zebrafish mutants that lack cilia motility (Hjeij et al., 2014; Jaffe
et al., 2016). Fittingly, motile cilia were found to be essential for
formation of the Reissner fiber (Cantaut-Belarif et al., 2018).
Although the Reissner fiber is unlikely to mechanically straighten
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A Wild-type embryo

FGF

B  RA-deficient mouse
Wild type

Loss of RA
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nt

L-LPM
R-LPM
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PSM

Fig. 5. Themaintenance of symmetry during segmentation. (A) Schematic
of a somite-stage mouse embryo showing the lateral plate mesoderm (LPM)
with left-sided L-R pathway activity (blue), the central neural tube (nt) and the
paraxial mesoderm (orange), the unsegmented region of which is called the
pre-somitic mesoderm (PSM, brown). Opposing gradients of RA and FGF
activity determine the position of the determination front, which is the position
at which cells initiate the segmentation program. (B) In the absence of RA,
mouse embryos exhibit asymmetric somites, with the right side showing a
delay owing to right-biased FGF8 activity. This results from the loss of buffering
by RA, which acts as a contralateral balancer to the somite desynchronizing
activity of FGF8.
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the body, it could signal the status of curvature of the embryo.
For example, in a straight embryo, the Reissner fiber may be
positioned centrally in the spinal canal but, in ventrally curved
embryos, it could touch mechano-responsive cells on the wall of the
central canal, and thereby relay information about body curvature
(Driever, 2018). Another potential model involves the Reissner
fiber functioning as a transport conduit that allows chemical signals
secreted in the brain to reach the spinal canal (Grimes, 2019; Zhang
et al., 2018). For example, adrenaline secreted in the brain signals,
directly or indirectly, to sensory cells in the spinal canal, termed
cerebrospinal fluid-contacting neurons (CSF-cNs), to upregulate the
expression of urotensin neuropeptides (Zhang et al., 2018). These
neuropeptides then signal to muscles specifically on the dorsal side,
causing their contraction and thereby the dorsal movements of the
body during its straightening (Zhang et al., 2018). Adrenaline
signals may be transported from their origin in the brain down the
spinal canal by cilia-driven CSF flow and/or via interactions with
the Reissner fiber. Future work is needed to explain how the status
of curvature is sensed; CSF-cNs, which are both chemo- and
mechano-responsive cells, are attractive candidates for this role.
Motile cilia are also required for the maintenance of a straight

spine during adolescent growth in zebrafish (Grimes et al., 2016).
Making use of a temperature-sensitive mutation in the cilia motility
gene cfap298 to inactivate cilia-driven CSF flow only after
embryonic periods allowed researchers to demonstrate that CSF

flow is essential during growth phases to prevent the formation of
spinal curves in zebrafish (Grimes et al., 2016). The curves that
result (Fig. 6C) exhibit hallmarks of idiopathic scoliosis, a prevalent
disease characterized by three-dimensional spinal curves (see
Box 1) (Cheng et al., 2015). Precisely how CSF flow promotes
spinal straightness is unknown, but the sensory CSF-cNs have again
been implicated (Sternberg et al., 2018). Zebrafish research is now
poised to make important strides in understanding the maintenance
of spinal straightness and diseases of aberrant spinal curvature such
as idiopathic scoliosis (Boswell and Ciruna, 2017).

Conclusions
Given that we are roughly bilaterally symmetric animals, and so too
are most of the animals we see and study, it is easy to think of
symmetry as a natural state for vertebrates and their embryos. But, as
the examples in this Review attest, this is not the case. Instead,
symmetries must be actively generated and maintained, with
asymmetries from various sources being buffered against.
Considering vertebrate evolutionary history, perhaps this is not so
surprising. Both limb buds and somites evolved in an asymmetric
context, in embryos that already possessed embryo-scale L-R
asymmetric pathways. Indeed, the somites of amphioxus, an animal
that sits at the base of the chordates (Box 2), develop in a
consistently asymmetric way (Brend and Holley, 2009; Conklin,
1932;Minguill; and Garcia-Fernandez, 2002; Schubert et al., 2001).
Not surprisingly, amphioxus embryos contain a functional L-R
asymmetric pathway (Li et al., 2017; Yu et al., 2002).

Going back further, there is the question of the origin of
bilaterality itself. This is currently a complex and little-understood
issue, and several plausible scenarios are debated (Genikhovich and
Technau, 2017). More-detailed phylogenies combined with the
functional study of non-traditional model organisms will help
address these issues in the future. A related question is how an
overall bilateral shape can develop from an egg given that many of
the molecular and cellular structures that make up eggs and early
embryos are chiral. These asymmetries must be somehow
compensated for during embryogenesis. Fruitful avenues of
research into these issues might come from the study of planarian
flatworms. These animals are highly symmetric, although subtle
cryptic asymmetries do exist (Nogi et al., 2005), and may resemble
early bilaterians. Planarian research is therefore well placed to
inform us about how bilateral body plans can be built from
asymmetric molecular and cellular components.

Although this Review is largely focused on directional
asymmetries governed by the L-R pathway, it should be noted
that other sources of asymmetry also exist. The investigation of
these promises to teach us much about developmental mechanisms.
For example, the study of fluctuating asymmetries, small deviations
between left and right, may shed light on the basis of developmental
stability in the face of intrinsic noise (Debat and Peronnet,
2013). Additionally, many organisms exhibit conspicuous L-R
asymmetries, such as the claws of the fiddler crab, the beaks of
crossbills and wrybills, and the tusk of the narwhal. These
asymmetries emerge through the interaction of complex genetics
and the environment. One particularly tractable example is the facial
asymmetries of blind Mexican cavefish (Powers et al., 2017;
Yamamoto et al., 2003). As cavefish are less inbred than traditional
models, this represents an exciting case for understanding how
complex genetic variation and environmental factors can impinge
upon biological traits. Last, the L-R pathway is not the only source
of directional asymmetries in the embryo; these can also emerge in
an organ-intrinsic fashion. For example, the dextral looping of the

Time
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Fig. 6. Zebrafish body symmetry depends on motile cilia-dependent
mechanisms. (A) Schematic of the first 30 h of zebrafish development.
Initially, during somite (som) stages, zebrafish embryos are curved around the
yolk ball. As the body axis extends, the trunk moves dorsally to straighten this
initial curve. (B) Image of a 30 h zebrafish embryo schematically showing the
position of the Reissner fiber, the floor plate of the neural tube and the
underlying notochord. (C) Schematic skeleton of a mutant zebrafish in which
cilia motility is inactivated. Mutants exhibit three-dimensional spinal curves
(orange) that resemble aspects of idiopathic scoliosis.
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zebrafish heart is controlled by a heart-intrinsic cytoskeleton-
dependent mechanism (Desgrange et al., 2018; Noël et al., 2013).
Thus, asymmetric information is transferred from smaller to larger
scales multiple times independently within the same embryo (Chin
et al., 2018; Ray et al., 2018), rather than emerging in a single
symmetry-breaking event.
Overall, maintaining symmetry on a canvas of molecular-,

cellular- and embryo-level asymmetry requires active processes that
act at the level of individual organs through to the entire organism
during both embryonic patterning and growth. To understand how
symmetries are achieved, we must understand the forces that
promote asymmetries, whether those be intrinsic noise or
directional signals, and how those are antagonized. This will
require an integrated holistic view of development that considers
several interacting tissues as well as systemic signals that act at a
distance.
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