Bulk RNA extraction from zebrafish embryos

Estimated time: ~2-3 hrs

Notes:

- Gives high quality RNA from 10-50 zebrafish embryos.
- This protocol calls for vortexing embryos for mechanical disruption, which is generally effective for embryos under 32 hpf. Embryos older than 32 hpf or in high batches (tubes of ~30 or more at a time) may require mechanical disruption with a clean pestle, in which case the embryos should be ground in a smaller volume of trizol (~250 μL) then brought to a total volume of 750 μL; this protocol then picks up after step 5.
- Perform all steps involving Trizol and/or chloroform in the fume hood.
- All instructions are per sample/per tube.
- 1. Harvest dechorionated embryos in a 1.5 mL tube.
- 2. Remove all embryo media from 1.5 mL tube.
- 3. Add 600 µL Trizol reagent (deli fridge).
- 4. Vortex (on max) 2-4 minutes until embryos fully disintegrate.
- 5. Add 150 μL Trizol reagent to reach a total volume of 750 μL.
- 6. Incubate 750 µL of embryonic lysate/Trizol for 5 minutes room temperature.
- 7. Add 200 µL Chloroform per 750 µL Trizol reagent used.
- 8. Vortex on max for 15 seconds, and hand tumble for 15 seconds (invert several times).
- 9. Incubate 2 minutes at room temperature.
- 10. Centrifuge at 12,000 x g for 15 minutes at 4 C (cold room centrifuge).

After centrifugation, the mixture should separate into a top (aqueous) layer containing extracted RNA. The bottom pink-red layer contains Trizol/Chloroform. Only transfer the top (aqueous) layer on to the next rounds of purification. For the first round, remove ~400 (or fewer) microliters of aqueous layer. For the second round, remove ~200 (or fewer) microliters of aqueous layer.

- 11. Remove ~400 μL of the top (aqueous) layer into a fresh tube containing 200 μL of Chloroform, taking care not to pipette up or disturb the other phases.
- 12. Repeat steps 7-9 once for a total of 2 chloroform washes.
- 13. Transfer ~200 μL from aqueous layer of second wash into a fresh tube containing 500 μL Isopropanol.
- 14. Add 10% of total volume 3M Sodium Acetate pH 5.2 (NaAc or NaOAc) [e.g. for 630 μ L isopropanol + aqueous phase, add 70 μ L of NaAc for a total vol of 700.]
- 15. Hand tumble for 30 seconds (invert 10-20 times).
- 16. Incubate 10 minutes at room temperature.
- 17. Centrifuge at 12,000 x g for 10 minutes at 4 C (cold room).

Grimes lab

At this step, the precipitated RNA will form a white pellet. The pellet size and level of visibility will depend on the RNA concentration.

- 18. Decant the supernatant alcohol into Trizol:chloroform waste, taking care not to disturb the pellet.
- 19. Add 1 mL of room temp 75% Ethanol to the pellet.
- 20. Invert tube 4-6 times.
- 21. Incubate 5 mins.
- 22. Centrifuge at 7500 x g for 5 minutes at 4 C (cold room centrifuge).

The remaining steps can be done at the bench.

- 23. Decant ethanol (down the sink or into waste beaker)
- 24. Repeat steps 17-21 twice more, for a grand total of 3 75% ethanol washes.
- 25. After the last decantation, pulse-spin samples and remove residual ethanol with a 20 μ L micropipette without disturbing the pellet. If the pellet gets disturbed at this step, add 1 mL 75% EtOH and re-spin 7500xg for 5 mins at 4 C.
- 26. Dry samples (lid open, sideways tube) for 2-5 min at room temp.
- 27. Dry samples (lid open) at ~65 C. (recommend using the always-70 C incubator)
- 28. Transfer to ice once no liquid remains on pellet.
- 29. Reconstitute with 20-50 µL RNAse-free H2O. May be necessary to scrape pipette tip gently along bottom of tube to resuspend.
- 30. Quantify RNA quantity and purity on nano-drop and record this info.
- 31. Aliquot and store at -80 C.